

Lecture 13

Water-filling Intuition + Transform Coding

Announcements

Quiz Q1

You have been given following joint probability distribution table for \$\$(X,Y)\$\$ on binary alphabets:

P(X=x,Y=y)	y = 0	y = 1
x = 0	0.5	0
x = 1	0.25	0.25

1.1 Calculate the joint entropy H(X, Y). $H(X, Y) = \sum_{x,y} P(X = x, Y = y) \log_2 \frac{1}{P(X = x, Y = y)} = 1.5.$ 1.2 Calculate the mutual information I(X; Y). $I(X; Y) = H(X) + H(Y) - H(X, Y) = H_b(0.5) + H_b(0.75) - 1.5 = 0.31$

Quiz Q2

Consider a uniformly distributed source on alphabet $\{0, 1, 2\}.$

You have been asked to lossily compress this source under MSE (mean square error) distortion and have been asked to calculate the rate distortion function R(D) for a given distortion value D.

2.1 What is R(D = 0)? $R(D = 0) = H(X) = \log_2 3$ 2.2 What is R(D = 1)? R(D = 1) = 0!, since we can always send 1 and achieve distortion $D(X_i, \hat{X}_i) <= 1$.

Quiz Q3

For a Ber(1/2) source with Hamming distortion, we saw in class that $R(D) = 1 - H_b(D)$, where $H_b(p)$ is entropy of a binary random variable with probability p. Which of the following are correct?

(Choose all that apply)

[] There exists a scheme working on large block sizes achieving distortion D and rate < $1 - H_b(D)$.

[] There exists a scheme working on large block sizes achieving distortion D and rate > $1 - H_b(D)$.

[] There exists a scheme working on large block sizes achieving distortion D and rate arbitrarily close to $1-H_b(D)$.

[] There exists a scheme working on single symbols at a time (block size = 1) achieving distortion D and rate arbitrarily close to $1 - H_b(D)$.

Recap

1. Learnt about Mutual Information

Let X, Y be two random variables with joint distribution p(x, y). Then we define the mutual information between X, Y as:

$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$

Recap

2. Learnt about (Shannon's) Rate-Distortion theory.

Let X_1, X_2, \ldots be data generated i.i.d. Then, the optimal rate R(D) for a given maximum distortion D is:

$$R(D) = \min_{\mathbb{E} d(X,Y) \leq D} I(X;Y)$$

where the expectation in the minimum is over distributions q(x, y) = p(x)q(y|x), where q(y|x) are any arbitrary conditional distributions.

Recap

3. Saw example for Gaussian Sources under MSE distortion.

Let $X \sim \mathcal{N}(0, \sigma^2)$, i.e. the data samples X_1, X_2, \ldots are distributed as unit gaussians. Also, lets consider the distortion to be the mean square distortion: $d(x, y) = (x - y)^2$ i.e the mse distortion. Then:

$$R(D) = egin{cases} rac{1}{2}\log_2rac{\sigma^2}{D} & 0\leq D\leq\sigma^2\ 0 & D>\sigma^2 \end{cases}$$
Also denoted by $R_G(\sigma^2,D) = \left(rac{1}{2}\log_2rac{\sigma^2}{D}
ight)_+$

Recap: Performance

Thumb-rule for Lossy Compression

Thumb-rule: For a given distortion measure, allocate more bits to the components with higher variance.

Today

1. Water-filling intuition for correlated gaussian sources

2. Learn about Transform Coding

Lossy Compression Problem Formulation

The two metrics for lossy compression are:

- Rate $R = \frac{logN}{k}$ bits/source component
- Distortion D = $d(X^k, \hat{X}^k) = rac{1}{k} \sum_{i=1}^k d(X_i, \hat{X}_i)$

Generalization of Shannon's RD Theorem

Let X_1, X_2, \ldots be data generated <u>*I.I.D.*</u>. Then, the optimal rate R(D) for a given maximum distortion D is:

$$R(D) = \min_{\mathbb{E} d(X,Y) \leq D} I(X;Y)$$

This is also referred to as *memoryless* sources. But what if the data is *correlated*?

Generalization of Shannon's RD Theorem

Consider source X^n and reconstruction \hat{X}^n . Then,

$$R(X^n,D)=min_{E[d(X^n,\hat{X}^n)]\leq D}rac{1}{n}I(X^n;\hat{X}^n)$$
 ,

i.e. Shannon's RD theorem generalizes to correlated sources as well.

• Just like R(X, D) was the analog of entropy of X, $R(X^n, D)$ is the analog of entropy of the n-tuple.

Generalization of Shannon's RD Theorem

Consider source X^n and reconstruction \hat{X}^n . Let $\mathbf{X} = X_1, X_2, X_3, ...$ define a stationary stochastic process. Then,

$$R(\mathbf{X},D) = \lim_{n o \infty} R(X^n,D)$$

- $R(\mathbf{X}, D)$ is the analog of entropy rate of the n-tuple.
 - $\circ~$ can show this limit exists for stationary sources.

the best you can do for stationary processes, in the limit of encoding arbitrarily many symbols in a block, is $R({f X},D)$

Example: Gaussian Source, k=2

- Let $X_1 \sim N(0,\sigma_1^2)$, $X_2 \sim N(0,\sigma_2^2)$ be independent random variables.
- Then, $X^2 = egin{bmatrix} X_1 \ X_2 \end{bmatrix}$ is a 2-dimensional random vector.

• Notation:
$$R(X^2, D) = R_G\left(\begin{bmatrix}\sigma_1^2\\\sigma_2^2\end{bmatrix}, D\right).$$

It can be shown that:

$$R_{G}\left(egin{bmatrix} \sigma_{1}^{2} \ \sigma_{2}^{2} \end{bmatrix}, D
ight) = min_{rac{1}{2}(D_{1}+D_{2})\leq D}rac{1}{2}[R_{G}(\sigma_{1}^{2},D_{1})+R_{G}(\sigma_{1}^{2},D_{2})]$$

i.e. we can greedily optimize independently over each component of the vector, ensuring that the total distortion is less than D.

Example: Gaussian Source, k=2

$$egin{aligned} R_G\left(egin{bmatrix} \sigma_1^2\ \sigma_2^2\end{bmatrix},D
ight) &= min_{rac{1}{2}(D_1+D_2)\leq D}rac{1}{2}[R_G(\sigma_1^2,D_1)+R_G(\sigma_1^2,D_2)] \ &= min_{rac{1}{2}(D_1+D_2)\leq D}\;rac{1}{2}\left[\left(rac{1}{2}\lograc{\sigma_1^2}{D_1}
ight)_++\left(rac{1}{2}\lograc{\sigma_2^2}{D_2}
ight)_+
ight] \end{aligned}$$

Can be solved using convex optimization techniques (solving KKT conditions). We will look into the answer for some intuition.

Example: Gaussian Source; Intuition

$$\begin{array}{l} \text{WLOG: assume } \sigma_1^2 \leq \sigma_2^2 \\ R_G\left(\begin{bmatrix} \sigma_1^2 \\ \sigma_2^2 \end{bmatrix}, D \right) = min_{\frac{1}{2}(D_1 + D_2) \leq D} \ \frac{1}{2} \left[\left(\frac{1}{2} \log \frac{\sigma_1^2}{D_1} \right)_+ + \left(\frac{1}{2} \log \frac{\sigma_2^2}{D_2} \right)_+ \right] \end{array}$$

Quiz-1: Should I ever allow $D_1 > \sigma_1^2$?

Example: Gaussian Source; Intuition

WLOG: assume $\sigma_1^2 \leq \sigma_2^2$

$$R_G\left(egin{bmatrix} \sigma_1^2 \ \sigma_2^2 \end{bmatrix}, D
ight) = min_{rac{1}{2}(D_1+D_2)\leq D} \; rac{1}{2} \left[\left(rac{1}{2}\lograc{\sigma_1^2}{D_1}
ight)_+ + \left(rac{1}{2}\lograc{\sigma_2^2}{D_2}
ight)_+
ight]$$

Quiz-1: Should I ever allow $D_1 > \sigma_1^2$? Quiz-2: What is $R(D_1)$ if $D_1 > \sigma_1^2$?

Example: Gaussian Source; Intuition

WLOG: assume
$$\sigma_1^2 \leq \sigma_2^2$$

 $R_G\left(\begin{bmatrix}\sigma_1^2\\\sigma_2^2\end{bmatrix}, D\right) = min_{rac{1}{2}(D_1+D_2)\leq D} \ rac{1}{2}\left[\left(rac{1}{2}\lograc{\sigma_1^2}{D_1}
ight)_+ + \left(rac{1}{2}\lograc{\sigma_2^2}{D_2}
ight)_+
ight]$ Quiz-3: What is $R(D)$ if $D > rac{\sigma_1^2 + \sigma_2^2}{2}$

Example: Gaussian Source; Solution

Let R(D) curve be parameterized by θ , i.e. $R(\theta), D(\theta)$. Then, solution to the optimization problem

$$R_{G}\left(egin{bmatrix} \sigma_{1}^{2} \ \sigma_{2}^{2} \end{bmatrix}, D
ight) = min_{rac{1}{2}(D_{1}+D_{2}) \leq D} \; rac{1}{2} \left[\left(rac{1}{2}\lograc{\sigma_{1}^{2}}{D_{1}}
ight)_{+} + \left(rac{1}{2}\lograc{\sigma_{2}^{2}}{D_{2}}
ight)_{+}
ight]$$

is given by:

•
$$D_i = \min\{\theta, \sigma_i^2\}$$
 for $i = 1, 2$; and $\frac{1}{2}(D_1 + D_2) = D$.
• $R = \frac{1}{2}\left[\left(\frac{1}{2}\log\frac{\sigma_1^2}{D_1}\right)_+ + \left(\frac{1}{2}\log\frac{\sigma_2^2}{D_2}\right)_+\right]$

i.e. we can find θ which satisfies the first condition, giving us the R(D) curve as $R(\theta), D(\theta)$.

Example: Gaussian Source; Water-filling Intuition

3 cases (WLOG: assume $\sigma_1^2 \leq \sigma_2^2$):

1. $D<\sigma_1^2$ and $D<\sigma_2^2$ 2. $\sigma_1^2< D<\sigma_2^2$ 3. $D>rac{\sigma_1^2+\sigma_2^2}{2}$

Example: Gaussian Source; Water-filling Intuition

One of the main ideas in lossy-compression, recall thumb-rule!

Thumb-rule: For a given distortion measure, allocate more bits to the components with higher variance.

For a block of 2 components, we can allocate more bits to the component with higher variance.

This is the water-filling intuition.

Onto Transform Coding: A Few Comments

- We looked into an example of uncorrelated gaussian sources, and saw that we can use water-filling intuition to selectively allocate bits to different components.
- This generalizes beautifully to correlated gaussian processes as well (see notes).
- But in general, we will have correlated non-gaussian sources, and we will need to do something more sophisticated.

Transform Coding: Transform the source to a different domain to allow for decorrelated components with different variances. Then, use water-filling intuition to selectively allocate bits to different components of the transformed source.

Transform Coding

(recall) Lossy compression problem formulation:

$$X_{1}, X_{2}, X_{3}, \dots, X_{k} \rightarrow ENC \quad J \in \{1, \dots, N\}$$

(bits)
 $\hat{X}_{1}, \hat{X}_{2}, \dots, \hat{X}_{k} \leftarrow DEC$

The two metrics for lossy compression are:

• Rate $R = \frac{logN}{k}$ bits/source component

• Distortion D =
$$d(X^k, \hat{X}^k) = rac{1}{k} \sum_{i=1}^k d(X_i, \hat{X}_i)$$

EE 274: Data Compression - Lecture 13

Transform Coding

Notation: $X^k = (X_1, \dots, X_k)$ as \underline{X} . Therefore, $\underline{X} \in \mathbb{R}^k$ (vector).

- Convert \underline{X} to $\underline{Y} = T(X)$, for this class assume T is linear (matrix)
- Need that T should be invertible
- We can use scalar or vector quantization on \underline{Y} to get $\hat{\underline{Y}}$

Transform Coding

Why transform coding?

- **Decorrelation**: X can be correlated, aim to de-correlate it
 - $\circ~$ allows for efficient coding of \underline{Y} e.g. using scalar quantization instead of vector quantization
- Energy compaction: more energy in first few components of \underline{Y} than in the last few
 - $\circ\,$ allows for allocating bits to different components of \underline{Y} in a more-efficient manner (recall: water-filling!)

This gives us criterion as to how we would like to choose T_{\cdot}

We will look into a specific transform T which is an orthonormal matrix.

Linear Algebra Review: Orthogonal Matrices

Consider Y = AX (matrix-vector product). If A is orthonormal (denoted by U), then:

- $U^T U = I$ (orthonormality)
- Square of the Euclidean norm, also called *energy* in the signal, is preserved under transform:

$$\circ ||Y||^2 = Y^T Y = X^T U^T U X = X^T X = ||X||^2$$

- This is also called the Parseval's theorem in context of Fourier transform.
- This says that the energy in transform domain matches the energy in the original.
- The transform preserves Euclidian distances between points, i.e.,

$$\circ\,$$
 if $Y_1=UX_1$ and $Y_2=UX_2$, then $||Y_1-Y_2||^2=||X_1-X_2||^2.$

• Allows us to do analysis for MSE distortion!

$$\circ \ D_{MSE} = \mathbb{E} ||X - \hat{X}||^2 = \mathbb{E} ||Y - \hat{Y}||^2$$

EE 274: Data Compression - Lecture 13

Linear Algebra Review: Eigenvalue Decomposition/Decorrelation

- Any symmetric matrix A can be decomposed as $A = U\Lambda U^T$, where U is orthonormal and Λ is diagonal.
- U is the matrix of (normalized) eigenvectors of A and Λ is the matrix of eigenvalues of A.
- U is orthonormal, i.e., $U^T U = I$.

FF 274: I

- We can use this to get de-correlated components of X by using $Y = U^T X$, i.e. $T = U^T$.
 - $\circ\;$ Let covariance matrix of X be $\Sigma = \mathbb{E}[XX^T].$
 - $\circ~$ We can apply eigenvalue decomposition to get $\Sigma = U \Lambda U^T.$

$$\circ$$
 Then, $Y = U^T X$ is de-correlated, i.e., $\mathbb{E}[YY^T] = \mathbb{E}[U^T X X^T U] = U^T U^T \mathbb{E}[X_1 X_1^T] = U^T \Sigma U = \Lambda.$

Example: consider a source $X_n = \rho X_{n-1} + \sqrt{1 - \rho^2} \mathcal{N}(0, \sigma^2)$, $X_0 \sim \mathcal{N}(0, \sigma^2)$. We will work with blocks of 2, i.e. k = 2.

Example: consider a source $X_n = \rho X_{n-1} + \sqrt{1 - \rho^2} \mathcal{N}(0, \sigma^2)$, $X_0 \sim \mathcal{N}(0, \sigma^2)$. We will work with blocks of 2, i.e. k = 2.

Quiz-4: What is the 2 imes 2 covariance matrix Σ of X?

HINT: your sequence is stationary!

$$\Sigma = \mathbb{E} \left[egin{bmatrix} X_i - \mathbb{E} X_i \ X_{i+1} - \mathbb{E} X_{i+1} \end{bmatrix} egin{bmatrix} X_i - \mathbb{E} X_i & X_{i+1} - \mathbb{E} X_{i+1} \end{bmatrix}
ight]$$

Example: consider a source $X_n = \rho X_{n-1} + \sqrt{1 - \rho^2} \mathcal{N}(0, \sigma^2)$, $X_0 \sim \mathcal{N}(0, \sigma^2)$. We will work with blocks of 2, i.e. k = 2.

Quiz-4: What is the 2 imes 2 covariance matrix Σ of X?

$$\Sigma = egin{bmatrix} 1 &
ho \
ho & 1 \end{bmatrix} \sigma^2$$

Example: consider a source $X_n = \rho X_{n-1} + \sqrt{1 - \rho^2} \mathcal{N}(0, \sigma^2)$, $X_0 \sim \mathcal{N}(0, \sigma^2)$. We will work with blocks of 2, i.e. k = 2.

Can show that the eigenvalues of Σ are - $\lambda_1 = (1 + \rho)\sigma^2$ and $\lambda_2 = (1 - \rho)\sigma^2$ - corresponding eigenvectors are $u_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $u_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Quiz-5: What is the eigenvalue-based transform at block-size k = 2 and transformed components Y?

Example: consider a source $X_n = \rho X_{n-1} + \sqrt{1 - \rho^2} \mathcal{N}(0, \sigma^2)$, $X_0 \sim \mathcal{N}(0, \sigma^2)$. We will work with blocks of 2, i.e. k = 2.

Quiz-5: What is the eigenvalue-based transform at block-size k=2, transformed components Y?

$$T=U^T=rac{1}{\sqrt{2}}egin{bmatrix}1&1\1&-1\end{bmatrix}$$
 and therefore $Y=TX=rac{1}{\sqrt{2}}egin{bmatrix}X_i+X_{i+1}\X_i-X_{i+1}\end{bmatrix}$

Example: consider a source $X_n = \rho X_{n-1} + \sqrt{1 - \rho^2} \mathcal{N}(0, \sigma^2)$, $X_0 \sim \mathcal{N}(0, \sigma^2)$. We will work with blocks of 2, i.e. k = 2.

$$Y = TX = \frac{1}{\sqrt{2}} \begin{bmatrix} X_i + X_{i+1} \\ X_i - X_{i+1} \end{bmatrix}$$

Quiz-6: What is the 2 imes 2 covariance matrix Σ of Y?

EE 274: Data Compression - Lecture 13

Example: consider a source $X_n = \rho X_{n-1} + \sqrt{1 - \rho^2} \mathcal{N}(0, \sigma^2)$, $X_0 \sim \mathcal{N}(0, \sigma^2)$. We will work with blocks of 2, i.e. k = 2.

Quiz-6: What is the 2×2 covariance matrix Σ_Y of Y? $\Sigma_Y = \begin{bmatrix} (1+
ho) & 0 \\ 0 & (1ho) \end{bmatrix} \sigma^2$, i.e. Y_1 and Y_2 are uncorrelated!

Moreover, the variances of Y_1 and Y_2 are such that Y_1 has higher variance than Y_2 . This is ^{EE 274: Data Compression - Lecture 13} the energy compaction property of the transform. (recall: water-filling!)

36

Karhunen-Loeve Transform (KLT)

- We looked into what is called the Karhunen-Loeve Transform (KLT) in signal processing.
- The KLT is the eigenvalue-based linear transform.
- The KLT is the optimal transform for a given covariance matrix Σ (without proof).
 - By optimal, we mean it in the sense that it maximally reduces the correlation between the transformed components.
 - The components have the property that they are uncorrelated and ordered in decreasing order of variance.
- Useful for many applications: often used for data compression, dimensionality reduction, and feature extraction in various fields, including image and signal processing.

Transform Coding + KLT

• We looked into one specific transform, the KLT, which is an orthonormal matrix and allows us to decorrelate the data.

Quiz-7: How does this allow better lossy-compression of X?

Transform Coding + KLT

• We looked into one specific transform, the KLT, which is an orthonormal matrix and allows us to decorrelate the data.

Quiz-7: How does this allow better lossy-compression of X?

For MSE distortion, we can allocate bits to the transformed components Y in a moreefficient manner, i.e., allocate more bits to the components with higher energy. (recall: thumb-rule!)

Transform Coding Notebook

https://colab.research.google.com/drive/1ZcnjlcoOHEbiTQWvcpiPYA9HbtfB829x? usp=sharing

Transform Coding Performance on our Example

Example: consider a source $X_n =
ho X_{n-1} + \sqrt{1ho^2} \mathcal{N}(0,\sigma^2)$

```
Processing rho: 0.9

Vector Quantization Experiment

[VQ] [Bit per symbol: 1] [Block Size: 2]Rate: 1.0, Distortion: 0.163

[VQ] [Bit per symbol: 1] [Block Size: 4]Rate: 1.0, Distortion: 0.095

TC Vector Quantization Experiment

[TC_VQ] [Bit per symbol: 1] [Block Size: 2] [Bitrate Split: [1, 1]]Rate: 1.0, Distortion: 0.276

[TC_VQ] [Bit per symbol: 1] [Block Size: 2] [Bitrate Split: [0, 2]]Rate: 1.0, Distortion: 0.970

[TC_VQ] [Bit per symbol: 1] [Block Size: 2] [Bitrate Split: [2, 0]]Rate: 1.0, Distortion: 0.122
```

Transform Coding Performance on our Example

Example: consider a source $X_n =
ho X_{n-1} + \sqrt{1ho^2} \mathcal{N}(0,\sigma^2)$

```
Processing rho: 0.99

Vector Quantization Experiment

[VQ] [Bit per symbol: 1] [Block Size: 2]Rate: 1.0, Distortion: 0.107

[VQ] [Bit per symbol: 1] [Block Size: 4]Rate: 1.0, Distortion: 0.020

TC Vector Quantization Experiment

[TC_VQ] [Bit per symbol: 1] [Block Size: 2] [Bitrate Split: [1, 1]]Rate: 1.0, Distortion: 0.204

[TC_VQ] [Bit per symbol: 1] [Block Size: 2] [Bitrate Split: [0, 2]]Rate: 1.0, Distortion: 0.890

[TC_VQ] [Bit per symbol: 1] [Block Size: 2] [Bitrate Split: [2, 0]]Rate: 1.0, Distortion: 0.030
```

Transform Coding Performance on our Example

Example: consider a source $X_n =
ho X_{n-1} + \sqrt{1ho^2} \mathcal{N}(0,\sigma^2)$

```
Processing rho: 0.5

Processing rho: 0.5

Vector Quantization Experiment

Vector Quantization Experiment

Vector Quantization Experiment

TC Vector Quantization Experiment

TC Vector Quantization Experiment

TC Vector Quantization Experiment

TC_VQ] [Bit per symbol: 1] [Block Size: 2] [Bitrate Split: [1, 1]]Rate: 1.0, Distortion: 0.374

[TC_VQ] [Bit per symbol: 1] [Block Size: 2] [Bitrate Split: [0, 2]]Rate: 1.0, Distortion: 0.786

[TC_VQ] [Bit per symbol: 1] [Block Size: 2] [Bitrate Split: [2, 0]]Rate: 1.0, Distortion: 0.343
```

Transform Coding + KLT: Issues

Quiz-8: Can you think of any issues with doing KLT in practice?

Transform Coding + KLT: Issues

Quiz-8: Can you think of any issues with doing KLT in practice? Ans:

- KLT is dependent on statistics of input data X!
 - $\circ\,$ KLT is optimal for a given covariance matrix $\Sigma.$
 - $\circ~$ In practice, we do not know Σ and need to estimate it from data.
 - $\circ~$ Moreover, data in real-life is not stationary, i.e., statistics change over time. Need to re-estimate $\Sigma.$
 - Therefore, in practice, KLT is computationally expensive!

Next class we will see other *fixed* orthonormal transforms which are more practical such as DCT, DFT, wavelets, etc.