Lecture 13

Water-filling Intuition + Transform Coding
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Announcements
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Quiz Q1

You have been given following joint probability distribution table for $$(X,Y)$$ on binary
alphabets:

P(X=xY=y) y=0 y=1
x=0 05 O
X =1 0.25 0.25
1.1 Calculate the joint entropy H (X ,Y).
H(X,Y)=3,, P(X =2,Y = y)log, prx=yy=y = 1.5

1.2 Calculate the mutual information I(X;Y").
I(X;Y)=H(X)+ H(Y)—-H(X,Y)=H0.5) + Hy(0.75) — 1.5 = 0.31
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Quiz Q2

Consider a uniformly distributed source on alphabet
{0,1, 2}.
You have been asked to lossily compress this source under MSE (mean square error)

distortion and have been asked to calculate the rate distortion function R(.D) for a given
distortion value D.

2.1 Whatis R(D = 0)?

R(D = 0) = H(X) = log, 3

2.2 Whatis R(D = 1)?

R(D = 1) = 0, since we can always send 1 and achieve distortion D(X;, X;) <= 1.
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Quiz Q3

Fora Ber(1/2) source with Hamming distortion, we saw in class that R(D) = 1 —

Hy(D), where Hy(p) is entropy of a binary random variable with probability p. Which of
the following are correct?
(Choose all that apply)

[ ] There exists a scheme working on large block sizes achieving distortion D and rate <

1 — Hy(D).
[ ] There exists a scheme working on large block sizes achieving distortion D and rate >
1 — Hy(D).

[ ] There exists a scheme working on large block sizes achieving distortion D and rate
arbitrarily close to 1 — Hy(D).

[ ] There exists a scheme working on single symbols at a time (block size = 1) achieving
distortion D and rate arbitrarily close to 1 — Hp( D).
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Recap

1. Learnt about Mutual Information

Let X, Y be two random variables with joint distribution p(x, ¢). Then we define the
mutual information between X, Y as:

I(X;Y)=H(X)+ H(Y)- H(X,Y)
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Recap

2. Learnt about (Shannon's) Rate-Distortion theory.

Let X1, X5, . . . be data generated i.i.d. Then, the optimal rate R(.D) for a given

maximum distortion D is:

R(D)= min I(X;Y)
Ed(X,Y)<D

where the expectation in the minimum is over distributions g(x, y) = p(x)q(y|z),
where q(y|x) are any arbitrary conditional distributions.
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Recap

3. Saw example for Gaussian Sources under MSE distortion.

Let X ~ N (0, 0?),i.e.the data samples X, X, . . . are distributed as unit
gaussians. Also, lets consider the distortion to be the mean square distortion:
d(z,y) = (z — y)? i.e the mse distortion. Then:

2

%logz% 0<D<g?

R(D) =
(D) 0 D > ¢?

1 2
Also denoted by Rg(02, D) = (5 log, %) N
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Recap: Performance
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Thumb-rule for Lossy Compression

Thumb-rule: For a given distortion measure, allocate more bits to the components
with higher variance.
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Today

1. Water-filling intuition for correlated gaussian sources

2. Learn about Transform Coding
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Lossy Compression Problem Formulation

><‘,3€>,'><5j,_./><y::/ j’ef‘, oy (NE, .....
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The two metrics for lossy compression are:

e RateR = loiN bits/source component

« Distortion D = d(X*, X*) = T ZZ . d(X;, X;)
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Generalization of Shannon's RD Theorem

Let X1, Xo, ... bedatagenerated I.1.D.. Then, the optimal rate R(.D) for a given
maximum distortion D is:

R(D)= min I(X;Y)
Ed(X,Y)<D

This is also referred to as memoryless sources.
But what if the data is correlated?
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Generalization of Shannon's RD Theorem

Consider source X ™ and reconstruction X ™. Then,

1

i.e. Shannon's RD theorem generalizes to correlated sources as well.

o Justlike R(X, D) was the analog of entropy of X, R(X", D) is the analog of
entropy of the n-tuple.
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Generalization of Shannon's RD Theorem

Consider source X" and reconstruction X”. Let X = X1, X9, X3,...definea
stationary stochastic process. Then,

R(X,D) = lim R(X",D)

n—o0

« R(X, D) is the analog of entropy rate of the n-tuple.
o can show this limit exists for stationary sources.

the best you can do for stationary processes, in the limit of encoding arbitrarily many
symbols in a block, is R(X, D)
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Example: Gaussian Source, k = 2

e Let X; ~ N(0,0%), X5 ~ N(0,03) be independent random variables.

X4

o 2 _
Then, X [ X,

] is a 2-dimensional random vector.

2
e Notation: R(X?, D) = Rg ([0%] ,D).
It can be shown that:

2

09

l.e. we can greedily optimize independently over each component of the vector, ensuring
that the total distortion is less than D.
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Example: Gaussian Source, k = 2

o} . 1

)
o 1 11 ol 11 o)
= MMy (DiD)<D 5 || 318 + 5 °8 D,

Can be solved using convex optimization techniques (solving KKT conditions). We will look
into the answer for some intuition.
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Example: Gaussian Source; Intuition

WLOG: assume 0 < 05

2 2
071 . 11/1 01
i <H D) — DD Kz 8D,

Quiz-1: Should | ever allow Dy > ¢2?
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Example: Gaussian Source; Intuition

WLOG: assume 0% < o

R¢ 62| ) T ML (D1+D)<D o 2 8

Quiz-1: Should | ever allow D; > 027
Quiz-2: Whatis R(D1) if D1 > 03?
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Example: Gaussian Source; Intuition

WLOG: assume 0% < 05

2 1[/1 o2
01 . 1
Re (|74] 2) = minionooo 5 | (58 5,

2 2
Quiz-3: Whatis R(D) if D > 717%
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Example: Gaussian Source; Solution

Let R(D) curve be parameterized by 6, i.e. R(6), D(8). Then, solution to the optimization
problem

5 2 5
0'1 o . 1 1 01 1 09
R ([0%] ,D) = AN L(D+D,)<D &, [(2 log D1) + (2 log D2) ]

is given by:

» D; = min{f,07}fori = 1,2;and 3(D; + Ds) = D.

1 1 U% ag
a1 [(b) - ),

i.e. we can find 8 which satisfies the first condition, giving us the R(D) curve as
R(9), D(9).
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Example: Gaussian Source; Water-filling Intuition

3 cases (WLOG: assume a% < 0'%):

1.D < o%and D < o3
2.09 < D < o2

0_2+0_2
3.D > 17%
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Example: Gaussian Source; Water-filling Intuition

One of the main ideas in lossy-compression, recall thumb-rule!

Thumb-rule: For a given distortion measure, allocate more bits to the components
with higher variance.

For a block of 2 components, we can allocate more bits to the component with higher

variance.
This is the water-filling intuition.
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Onto Transform Coding: A Few Comments

o \We looked into an example of uncorrelated gaussian sources, and saw that we can
use water-filling intuition to selectively allocate bits to different components.

e This generalizes beautifully to correlated gaussian processes as well (see notes).
e Butin general, we will have correlated non-gaussian sources, and we will need to do

something more sophisticated.

Transform Coding: Transform the source to a different domain to allow for
decorrelated components with different variances. Then, use water-filling intuition to
selectively allocate bits to different components of the transformed source.
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Transform Coding

(recall) Lossy compression problem formulation:

x(,xL,ng-,./xL_:/ Tef -, 0.
|
&‘% DEC %\J

The two metrics for lossy compression are:

AN 4N
><l / Xz/""'/ XK

logN

e RateR = 2

bits/source component

e Distortion D = d(X*, Xk) A Zz 1 (Xz',Xz')
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Transform Coding

Notation: X* = (X1, ..., X}) as X. Therefore, X € R¥ (vector).

o Convert X toY = T'(X), for this class assume T is linear (matrix)

e Need that I’ should be invertible

o We can use scalar or vector quantizationon Y toget Y

x —»[ T | i:m*

(bits)

A Ty
N ah
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Transform Coding

Why transform coding?

e Decorrelation: X can be correlated, aim to de-correlate it
o allows for efficient coding of Y e.g. using scalar quantization instead of vector
quantization

e Energy compaction: more energy in first few components of Y than in the last few
o allows for allocating bits to different components of Y in a more-efficient manner
(recall: water-filling!)

This gives us criterion as to how we would like to choose 1'.
We will look into a specific transform I’ which is an orthonormal matrix.
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Linear Algebra Review: Orthogonal Matrices

Consider Y = A X (matrix-vector product). If A is orthonormal (denoted by U), then:

o« UTU = I (orthonormality)

e Square of the Euclidean norm, also called energy in the signal, is preserved under
transform:

o IV =YY = XTUTUX = XTX = || X|?

o This is also called the Parseval's theorem in context of Fourier transform.

o This says that the energy in transform domain matches the energy in the original.
o The transform preserves Euclidian distances between points, i.e.,

o ifY; = UX1andYs = UXo then ||Y1 — V3|2 = || X1 — Xo|[2

o Allows us to do analysis for MSE distortion!

o Dysp = E||X — X||? =E||Y - Y2
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Linear Algebra Review: Eigenvalue
Decomposition/Decorrelation

e Any symmetric matrix A can be decomposedas A = UAU', where U is
orthonormal and A is diagonal.

e U is the matrix of (normalized) eigenvectors of A and A is the matrix of eigenvalues

of A.
e U isorthonormal,ie., UTU = T.

« We can use this to get de-correlated components of X by usingY = UL X ,ie.
T=UT,
o Let covariance matrix of X be ¥ = E[X X1].

o We can apply eigenvalue decompositionto get X = UAU .
o Then,Y = Ul X is de-correlated, ie, E[YY?] = E[UT X XTU| =
EE 274: Data COmprervia]ELngrX:%T]U — UTEU = A. 29



Decorrelation Example

Example: consider a source X,, = pX,,_1 + /1 — p2N(0,0?%), Xy ~ N(0,5?).
We will work with blocks of 2,i.e. k = 2.

Original Data samples (k = 2)
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30



Decorrelation Example
Example: consider a source X,, = pX,,_1 + /1 — p2N (0, 0?), Xy ~ N(0,0%). We
will work with blocks of 2,i.e. k = 2.

Quiz-4: What is the 2 X 2 covariance matrix > of X ?
HINT: your sequence is stationary!

X; — EX;
=K ' ' X; —EX; X;.1—EX;
[[XH—I — EX@'—I—I] | H 1
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Decorrelation Example

Example: consider a source X,, = pX,,_1 + /1 — p2N (0, 0?), Xo ~ N(0,0%). We
will work with blocks of 2,i.e. k = 2.

Quiz-4: What is the 2 X 2 covariance matrix 22 of X ?

|1 p|
_[plla
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Decorrelation Example

Example: consider a source X, = pX,, 1 + /1 — p2N(0,0%), Xo ~ N(0,0%). We
will work with blocks of 2,i.e. k = 2.

Can show that the eigenvalues of . are
-A1 = (14 p)otand Ay = (1 — p)o?
1 1
, . 1 _ 1
corresponding eigenvectors are u; = 73 [1] and u9 NG [_1].
Quiz-5: What is the eigenvalue-based transform at block-size k = 2 and transformed

components Y ?
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Decorrelation Example

Example: consider a source X,, = pX,,_1 + /1 — p2N (0, 0?), Xy ~ N (0,0?).We
will work with blocks of 2,i.e. k = 2.

Quiz-5: What is the eigenvalue-based transform at block-size k = 2, transformed

components Y ?

T:UT:\%[1 1]andthereforeY:TX:\}§[

X; + X
1 -1

X; — X
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Decorrelation Example

Example: consider a source X,, = pX,,_1 + 1/1 — p?N(0,02), Xy ~ N (0,0?). We
will work with blocks of 2,i.e. k = 2.

V2 | X; — Xin
. Original Data samples (k=2) . Transformed Data samples in 2D (k = 2)
3 b

safy

¥
B L]
#e

74 T T T T T T T T T T T T
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4

Quiz-6: What isthe 2 X 2 covariance matrix 22 of Y ?
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Decorrelation Example

Example: consider a source X,, = pX,,_1 + /1 — p2N (0, 0?), Xo ~ N(0,0%). We
will work with blocks of 2,i.e. k = 2.

Original Data samples (k=2) Transformed Data samples in 2D (k= 2)

T T T T T T
-3 -2 -1 0 1 2 3

Quiz-6: What is the 2 X 2 covariance matrix 2y of Y ?

(1+p) 0 - |
0 (1 _ ,0) o“,i.e. Y] and Y5 are uncorrelated!

Moreover, the variances of Y7 and Y5 are such that Y7 has higher variance than Y5. This is

EE 274: Data Compression - Lecture 13 -
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Karhunen-Loeve Transform (KLT)

o We looked into what is called the Karhunen-Loeve Transform (KLT) in signal
processing.

e The KLT is the eigenvalue-based linear transform.
e The KLT is the optimal transform for a given covariance matrix > (without proof).

o By optimal, we mean it in the sense that it maximally reduces the correlation
between the transformed components.

o The components have the property that they are uncorrelated and ordered in
decreasing order of variance.

o Useful for many applications: often used for data compression, dimensionality
reduction, and feature extraction in various fields, including image and signal
processing.
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Transform Coding + KLT

o \We looked into one specific transform, the KLT, which is an orthonormal matrix and
allows us to decorrelate the data.

Quiz-7: How does this allow better lossy-compression of X ?
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Transform Coding + KLT

o We looked into one specific transform, the KLT, which is an orthonormal matrix and

allows us to decorrelate the data.

Quiz-7: How does this allow better lossy-compression of X ?
For MSE distortion, we can allocate bits to the transformed components Y in a more-
efficient manner, i.e., allocate more bits to the components with higher energy. (recall:

thumb-rule!)

Original Data samples (k= 2) . Transformed Data samples in 2D (k = 2)

2
—3 $°€ —3

-4 T T T T T T -4 T T T T T T
-4 -3 =2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4
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Transform Coding Notebook

https://colab.research.google.com/drive/1ZcnjlcoOHEbIiTQWvcpiPYA9QHbtfB829x?
usp=sharing
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Transform Coding Performance on our Example

Example: consider a source X,, = pX,,_1 + 1/1 — p2N (0, 0%)

[VQ] [Bit per symbol: 1] [Block Size: 2]Rate: 1.0, Distortion: 0.163
[VQ] [Bit per symbol: 1][Block Size: 4]Rate: 1.0, Distortion: 0.095

[TC_VQ] [Bit per symbol: 1] [Block Size: 2][Bitrate Split: [1, 1]]Rate: 1.0, Distortion: 0.276
[TC_VQ] [Bit per symbol: 1][Block Size: 2][Bitrate Split: [0, 2]]Rate: 1.0, Distortion: 0.970
[TC_VQ] [Bit per symbol: 1] [Block Size: 2][Bitrate Split: [2, @]]Rate: 1.0, Distortion: 0.122
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Transform Coding Performance on our Example

Example: consider a source X,, = pX,,_1 + 1/1 — p2N (0, 0%)

[VQ] [Bit per symbol: 1] [Block Size: 2]Rate: 1.0, Distortion: 0.107
[VQ] [Bit per symbol: 1] [Block Size: 4]Rate: 1.0, Distortion: 0.020

[TC_VQ] [Bit per symbol: 1] [Block Size: 2][Bitrate Split: [1, 1]]Rate: 1.0, Distortion: 0.204
[TC_VQ] [Bit per symbol: 1] [Block Size: 2] [Bitrate Split: [@, 2]]Rate: 1.0, Distortion: 0.890
[TC_VQ] [Bit per symbol: 1] [Block Size: 2][Bitrate Split: [2, @]]Rate: 1.0, Distortion: 0.030
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Transform Coding Performance on our Example

Example: consider a source X,, = pX,,_1 + 1/1 — p2N (0, 0%)

[VQ] [Bit per symbol: 1] [Block Size: 2]Rate: 1.0, Distortion: 0.305
[VQ] [Bit per symbol: 1] [Block Size: 4]Rate: 1.0, Distortion: 0.271

[TC_VQ] [Bit per symbol: 1] [Block Size: 2][Bitrate Split: [1, 1]]Rate: 1.0, Distortion: 0.374
[TC_VQ] [Bit per symbol: 1][Block Size: 2][Bitrate Split: [0, 2]]Rate: 1.0, Distortion: 0.786
[TC_VQ] [Bit per symbol: 1] [Block Size: 2][Bitrate Split: [2, @]]Rate: 1.0, Distortion: 0.343
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Transform Coding + KLT: Issues

Quiz-8: Can you think of any issues with doing KLT in practice?
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Transform Coding + KLT: Issues

Quiz-8: Can you think of any issues with doing KLT in practice?

Ans:
e KLT is dependent on statistics of input data X!
o KLT is optimal for a given covariance matrix ..
o In practice, we do not know 22 and need to estimate it from data.

o Moreover, data in real-life is not stationary, i.e., statistics change over time. Need

to re-estimate X..

o Therefore, in practice, KLT is computationally expensive!

Next class we will see other fixed orthonormal transforms which are more practical such as
DCT, DFT, wavelets, etc.
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