Lecture 13

Water-filling Intuition + Transform Coding

Announcements

Quiz Q1

You have been given following joint probability distribution table for $\$ \$(X, Y) \$ \$$ on binary alphabets:

$P(X=x, Y=y)$	$y=0$	$y=1$
$x=0$	0.5	0
$X=1$	0.25	0.25

1.1 Calculate the joint entropy $H(X, Y)$.

$$
H(X, Y)=\sum_{x, y} P(X=x, Y=y) \log _{2} \frac{1}{P(X=x, Y=y)}=1.5
$$

1.2 Calculate the mutual information $I(X ; Y)$.
$I(X ; Y)=H(X)+H(Y)-H(X, Y)=H_{b}(0.5)+H_{b}(0.75)-1.5=0.31$

Quiz Q2

Consider a uniformly distributed source on alphabet $\{0,1,2\}$.

You have been asked to lossily compress this source under MSE (mean square error) distortion and have been asked to calculate the rate distortion function $R(D)$ for a given distortion value D.
2.1 What is $R(D=0)$?
$R(D=0)=H(X)=\log _{2} 3$
2.2 What is $R(D=1)$?
$R(D=1)=0!$, since we can always send 1 and achieve distortion $D\left(X_{i}, \hat{X}_{i}\right)<=1$.

Quiz Q3

For a $\operatorname{Ber}(1 / 2)$ source with Hamming distortion, we saw in class that $R(D)=1-$ $H_{b}(D)$, where $H_{b}(p)$ is entropy of a binary random variable with probability p. Which of the following are correct?
(Choose all that apply)
[] There exists a scheme working on large block sizes achieving distortion D and rate < $1-H_{b}(D)$.
[] There exists a scheme working on large block sizes achieving distortion D and rate > $1-H_{b}(D)$.
[] There exists a scheme working on large block sizes achieving distortion D and rate arbitrarily close to $1-H_{b}(D)$.
[] There exists a scheme working on single symbols at a time (block size = 1) achieving distortion D and rate arbitrarily close to $1-H_{b}(D)$.

Recap

1. Learnt about Mutual Information

Let X, Y be two random variables with joint distribution $p(x, y)$. Then we define the mutual information between X, Y as:

$$
I(X ; Y)=H(X)+H(Y)-H(X, Y)
$$

Recap

2. Learnt about (Shannon's) Rate-Distortion theory.

Let X_{1}, X_{2}, \ldots be data generated i.i.d. Then, the optimal rate $R(D)$ for a given maximum distortion D is:

$$
R(D)=\min _{\mathbb{E} d(X, Y) \leq D} I(X ; Y)
$$

where the expectation in the minimum is over distributions $q(x, y)=p(x) q(y \mid x)$, where $q(y \mid x)$ are any arbitrary conditional distributions.

Recap

3. Saw example for Gaussian Sources under MSE distortion.

Let $X \sim \mathcal{N}\left(0, \sigma^{2}\right)$, i.e. the data samples X_{1}, X_{2}, \ldots are distributed as unit gaussians. Also, lets consider the distortion to be the mean square distortion: $d(x, y)=(x-y)^{2}$ i.e the mse distortion. Then:

$$
R(D)= \begin{cases}\frac{1}{2} \log _{2} \frac{\sigma^{2}}{D} & 0 \leq D \leq \sigma^{2} \\ 0 & D>\sigma^{2}\end{cases}
$$

Also denoted by $R_{G}\left(\sigma^{2}, D\right)=\left(\frac{1}{2} \log _{2} \frac{\sigma^{2}}{D}\right)_{+}$

Recap: Performance

Thumb-rule for Lossy Compression

Thumb-rule: For a given distortion measure, allocate more bits to the components with higher variance.

Today

1. Water-filling intuition for correlated gaussian sources
2. Learn about Transform Coding

Lossy Compression Problem Formulation

The two metrics for lossy compression are:

- Rate $\mathrm{R}=\frac{\log N}{k}$ bits/source component
- Distortion $\mathrm{D}=d\left(X^{k}, \hat{X}^{k}\right)=\frac{1}{k} \sum_{i=1}^{k} d\left(X_{i}, \hat{X}_{i}\right)$

Generalization of Shannon's RD Theorem

Let X_{1}, X_{2}, \ldots be data generated I.I.D.. Then, the optimal rate $R(D)$ for a given maximum distortion D is:

$$
R(D)=\min _{\mathbb{E} d(X, Y) \leq D} I(X ; Y)
$$

This is also referred to as memoryless sources.
But what if the data is correlated?

Generalization of Shannon's RD Theorem

Consider source X^{n} and reconstruction \hat{X}^{n}. Then,

$$
R\left(X^{n}, D\right)=\min _{E\left[d\left(X^{n}, \hat{X}^{n}\right)\right] \leq D} \frac{1}{n} I\left(X^{n} ; \hat{X}^{n}\right)
$$

i.e. Shannon's RD theorem generalizes to correlated sources as well.

- Just like $R(X, D)$ was the analog of entropy of $X, R\left(X^{n}, D\right)$ is the analog of entropy of the n-tuple.

Generalization of Shannon's RD Theorem

Consider source X^{n} and reconstruction \hat{X}^{n}. Let $\mathbf{X}=X_{1}, X_{2}, X_{3}, \ldots$ define a stationary stochastic process. Then,

$$
R(\mathbf{X}, D)=\lim _{n \rightarrow \infty} R\left(X^{n}, D\right)
$$

- $R(\mathbf{X}, D)$ is the analog of entropy rate of the n-tuple.
- can show this limit exists for stationary sources.
the best you can do for stationary processes, in the limit of encoding arbitrarily many symbols in a block, is $R(\mathbf{X}, D)$

Example: Gaussian Source, $k=2$

- Let $X_{1} \sim N\left(0, \sigma_{1}^{2}\right), X_{2} \sim N\left(0, \sigma_{2}^{2}\right)$ be independent random variables.
- Then, $X^{2}=\left[\begin{array}{c}X_{1} \\ X_{2}\end{array}\right]$ is a 2-dimensional random vector.
- Notation: $R\left(X^{2}, D\right)=R_{G}\left(\left[\begin{array}{c}\sigma_{1}^{2} \\ \sigma_{2}^{2}\end{array}\right], D\right)$.

It can be shown that:
$R_{G}\left(\left[\begin{array}{c}\sigma_{1}^{2} \\ \sigma_{2}^{2}\end{array}\right], D\right)=\min _{\frac{1}{2}\left(D_{1}+D_{2}\right) \leq D} \frac{\frac{1}{2}\left[R_{G}\left(\sigma_{1}^{2}, D_{1}\right)+R_{G}\left(\sigma_{1}^{2}, D_{2}\right)\right]}{}$
i.e. we can greedily optimize independently over each component of the vector, ensuring that the total distortion is less than D.

Example: Gaussian Source, $k=2$

$$
\begin{aligned}
R_{G}\left(\left[\begin{array}{l}
\sigma_{1}^{2} \\
\sigma_{2}^{2}
\end{array}\right], D\right) & =\min _{\frac{1}{2}\left(D_{1}+D_{2}\right) \leq D} \frac{1}{2}\left[R_{G}\left(\sigma_{1}^{2}, D_{1}\right)+R_{G}\left(\sigma_{1}^{2}, D_{2}\right)\right] \\
& =\min _{\frac{1}{2}\left(D_{1}+D_{2}\right) \leq D} \frac{1}{2}\left[\left(\frac{1}{2} \log \frac{\sigma_{1}^{2}}{D_{1}}\right)_{+}+\left(\frac{1}{2} \log \frac{\sigma_{2}^{2}}{D_{2}}\right)_{+}\right]
\end{aligned}
$$

Can be solved using convex optimization techniques (solving KKT conditions). We will look into the answer for some intuition.

Example: Gaussian Source; Intuition

WLOG: assume $\sigma_{1}^{2} \leq \sigma_{2}^{2}$

$$
R_{G}\left(\left[\begin{array}{l}
\sigma_{1}^{2} \\
\sigma_{2}^{2}
\end{array}\right], D\right)=\min _{\frac{1}{2}\left(D_{1}+D_{2}\right) \leq D} \frac{1}{2}\left[\left(\frac{1}{2} \log \frac{\sigma_{1}^{2}}{D_{1}}\right)_{+}+\left(\frac{1}{2} \log \frac{\sigma_{2}^{2}}{D_{2}}\right)_{+}\right]
$$

Quiz-1: Should l ever allow $D_{1}>\sigma_{1}^{2}$?

Example: Gaussian Source; Intuition

WLOG: assume $\sigma_{1}^{2} \leq \sigma_{2}^{2}$

$$
R_{G}\left(\left[\begin{array}{l}
\sigma_{1}^{2} \\
\sigma_{2}^{2}
\end{array}\right], D\right)=\min _{\frac{1}{2}\left(D_{1}+D_{2}\right) \leq D} \frac{1}{2}\left[\left(\frac{1}{2} \log \frac{\sigma_{1}^{2}}{D_{1}}\right)_{+}+\left(\frac{1}{2} \log \frac{\sigma_{2}^{2}}{D_{2}}\right)_{+}\right]
$$

Quiz-1: Should I ever allow $D_{1}>\sigma_{1}^{2}$?
Quiz-2: What is $R\left(D_{1}\right)$ if $D_{1}>\sigma_{1}^{2}$?

Example: Gaussian Source; Intuition

WLOG: assume $\sigma_{1}^{2} \leq \sigma_{2}^{2}$

$$
R_{G}\left(\left[\begin{array}{l}
\sigma_{1}^{2} \\
\sigma_{2}^{2}
\end{array}\right], D\right)=\min _{\frac{1}{2}\left(D_{1}+D_{2}\right) \leq D} \frac{1}{2}\left[\left(\frac{1}{2} \log \frac{\sigma_{1}^{2}}{D_{1}}\right)_{+}+\left(\frac{1}{2} \log \frac{\sigma_{2}^{2}}{D_{2}}\right)_{+}\right]
$$

Quiz-3: What is $R(D)$ if $D>\frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{2}$

Example: Gaussian Source; Solution

Let $\mathrm{R}(\mathrm{D})$ curve be parameterized by θ, i.e. $R(\theta), D(\theta)$. Then, solution to the optimization problem

$$
R_{G}\left(\left[\begin{array}{l}
\sigma_{1}^{2} \\
\sigma_{2}^{2}
\end{array}\right], D\right)=\min _{\frac{1}{2}\left(D_{1}+D_{2}\right) \leq D} \frac{1}{2}\left[\left(\frac{1}{2} \log \frac{\sigma_{1}^{2}}{D_{1}}\right)_{+}+\left(\frac{1}{2} \log \frac{\sigma_{2}^{2}}{D_{2}}\right)_{+}\right]
$$

is given by:

- $D_{i}=\min \left\{\theta, \sigma_{i}^{2}\right\}$ for $i=1,2$; and $\frac{1}{2}\left(D_{1}+D_{2}\right)=D$.
- $R=\frac{1}{2}\left[\left(\frac{1}{2} \log \frac{\sigma_{1}^{2}}{D_{1}}\right)_{+}+\left(\frac{1}{2} \log \frac{\sigma_{2}^{2}}{D_{2}}\right)_{+}\right]$
i.e. we can find θ which satisfies the first condition, giving us the $R(D)$ curve as $R(\theta), D(\theta)$.

Example: Gaussian Source; Water-filling Intuition

3 cases (WLOG: assume $\sigma_{1}^{2} \leq \sigma_{2}^{2}$):

1. $D<\sigma_{1}^{2}$ and $D<\sigma_{2}^{2}$
2. $\sigma_{1}^{2}<D<\sigma_{2}^{2}$
3. $D>\frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{2}$

Example: Gaussian Source; Water-filling Intuition

One of the main ideas in lossy-compression, recall thumb-rule!
Thumb-rule: For a given distortion measure, allocate more bits to the components with higher variance.

For a block of 2 components, we can allocate more bits to the component with higher variance.
This is the water-filling intuition.

Onto Transform Coding: A Few Comments

- We looked into an example of uncorrelated gaussian sources, and saw that we can use water-filling intuition to selectively allocate bits to different components.
- This generalizes beautifully to correlated gaussian processes as well (see notes).
- But in general, we will have correlated non-gaussian sources, and we will need to do something more sophisticated.

Transform Coding: Transform the source to a different domain to allow for decorrelated components with different variances. Then, use water-filling intuition to selectively allocate bits to different components of the transformed source.

Transform Coding

(recall) Lossy compression problem formulation:

The two metrics for lossy compression are:

- Rate $\mathrm{R}=\frac{\log N}{k}$ bits/source component
- Distortion D $=d\left(X^{k}, \hat{X}^{k}\right)=\frac{1}{k} \sum_{i=1}^{k} d\left(X_{i}, \hat{X}_{i}\right)$

Transform Coding

Notation: $X^{k}=\left(X_{1}, \ldots, X_{k}\right)$ as \underline{X}. Therefore, $\underline{X} \in \mathbb{R}^{k}$ (vector).

- Convert \underline{X} to $\underline{Y}=T(X)$, for this class assume T is linear (matrix)
- Need that T should be invertible
- We can use scalar or vector quantization on \underline{Y} to get $\underline{\hat{Y}}$

Transform Coding

Why transform coding?

- Decorrelation: X can be correlated, aim to de-correlate it
- allows for efficient coding of \underline{Y} e.g. using scalar quantization instead of vector quantization
- Energy compaction: more energy in first few components of \underline{Y} than in the last few
- allows for allocating bits to different components of \underline{Y} in a more-efficient manner (recall: water-filling!)

This gives us criterion as to how we would like to choose T.
We will look into a specific transform T which is an orthonormal matrix.

Linear Algebra Review: Orthogonal Matrices

Consider $Y=A X$ (matrix-vector product). If A is orthonormal (denoted by U), then:

- $U^{T} U=I$ (orthonormality)
- Square of the Euclidean norm, also called energy in the signal, is preserved under transform:
- $\|Y\|^{2}=Y^{T} Y=X^{T} U^{T} U X=X^{T} X=\|X\|^{2}$
- This is also called the Parseval's theorem in context of Fourier transform.
- This says that the energy in transform domain matches the energy in the original.
- The transform preserves Euclidian distances between points, i.e.,
- if $Y_{1}=U X_{1}$ and $Y_{2}=U X_{2}$, then $\left\|Y_{1}-Y_{2}\right\|^{2}=\left\|X_{1}-X_{2}\right\|^{2}$.
- Allows us to do analysis for MSE distortion!
- $D_{M S E}=\mathbb{E}\|X-\hat{X}\|^{2}=\mathbb{E}\|Y-\hat{Y}\|^{2}$

Linear Algebra Review: Eigenvalue Decomposition/Decorrelation

- Any symmetric matrix A can be decomposed as $A=U \Lambda U^{T}$, where U is orthonormal and Λ is diagonal.
- U is the matrix of (normalized) eigenvectors of A and Λ is the matrix of eigenvalues of A.
- U is orthonormal, i.e., $U^{T} U=I$.
- We can use this to get de-correlated components of X by using $Y=U^{T} X$, i.e. $T=U^{T}$.
- Let covariance matrix of X be $\Sigma=\mathbb{E}\left[X X^{T}\right]$.
- We can apply eigenvalue decomposition to get $\Sigma=U \Lambda U^{T}$.
- Then, $Y=U^{T} X$ is de-correlated, i.e., $\mathbb{E}\left[Y Y^{T}\right]=\mathbb{E}\left[U^{T} X X^{T} U\right]=$

Decorrelation Example

Example: consider a source $X_{n}=\rho X_{n-1}+\sqrt{1-\rho^{2}} \mathcal{N}\left(0, \sigma^{2}\right), X_{0} \sim \mathcal{N}\left(0, \sigma^{2}\right)$.
We will work with blocks of 2 , i.e. $k=2$.

Decorrelation Example

Example: consider a source $X_{n}=\rho X_{n-1}+\sqrt{1-\rho^{2}} \mathcal{N}\left(0, \sigma^{2}\right), X_{0} \sim \mathcal{N}\left(0, \sigma^{2}\right)$. We will work with blocks of 2 , i.e. $k=2$.

Quiz-4: What is the 2×2 covariance matrix Σ of X ?
HINT: your sequence is stationary!
$\Sigma=\mathbb{E}\left[\left[\begin{array}{c}X_{i}-\mathbb{E} X_{i} \\ X_{i+1}-\mathbb{E} X_{i+1}\end{array}\right]\left[\begin{array}{ll}X_{i}-\mathbb{E} X_{i} & \left.X_{i+1}-\mathbb{E} X_{i+1}\right]\end{array}\right]\right.$

Decorrelation Example

Example: consider a source $X_{n}=\rho X_{n-1}+\sqrt{1-\rho^{2}} \mathcal{N}\left(0, \sigma^{2}\right)$, $X_{0} \sim \mathcal{N}\left(0, \sigma^{2}\right)$. We will work with blocks of 2, i.e. $k=2$.

Quiz-4: What is the 2×2 covariance matrix Σ of X ?
$\Sigma=\left[\begin{array}{ll}1 & \rho \\ \rho & 1\end{array}\right] \sigma^{2}$

Decorrelation Example

Example: consider a source $X_{n}=\rho X_{n-1}+\sqrt{1-\rho^{2}} \mathcal{N}\left(0, \sigma^{2}\right)$, $X_{0} \sim \mathcal{N}\left(0, \sigma^{2}\right)$. We will work with blocks of 2 , i.e. $k=2$.

Can show that the eigenvalues of Σ are

- $\lambda_{1}=(1+\rho) \sigma^{2}$ and $\lambda_{2}=(1-\rho) \sigma^{2}$
- corresponding eigenvectors are $u_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $u_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ -1\end{array}\right]$.

Quiz-5: What is the eigenvalue-based transform at block-size $k=2$ and transformed components Y ?

Decorrelation Example

Example: consider a source $X_{n}=\rho X_{n-1}+\sqrt{1-\rho^{2}} \mathcal{N}\left(0, \sigma^{2}\right)$, $X_{0} \sim \mathcal{N}\left(0, \sigma^{2}\right)$. We will work with blocks of 2 , i.e. $k=2$.

Quiz-5: What is the eigenvalue-based transform at block-size $k=2$, transformed components Y ?
$T=U^{T}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$ and therefore $Y=T X=\frac{1}{\sqrt{2}}\left[\begin{array}{l}X_{i}+X_{i+1} \\ X_{i}-X_{i+1}\end{array}\right]$

Decorrelation Example

Example: consider a source $X_{n}=\rho X_{n-1}+\sqrt{1-\rho^{2}} \mathcal{N}\left(0, \sigma^{2}\right), X_{0} \sim \mathcal{N}\left(0, \sigma^{2}\right)$. We will work with blocks of 2 , i.e. $k=2$.

$$
Y=T X=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
X_{i}+X_{i+1} \\
X_{i}-X_{i+1}
\end{array}\right]
$$

Quiz-6: What is the 2×2 covariance matrix Σ of Y ?

Decorrelation Example

Example: consider a source $X_{n}=\rho X_{n-1}+\sqrt{1-\rho^{2}} \mathcal{N}\left(0, \sigma^{2}\right)$, $X_{0} \sim \mathcal{N}\left(0, \sigma^{2}\right)$. We will work with blocks of 2 , i.e. $k=2$.

Quiz-6: What is the 2×2 covariance matrix Σ_{Y} of Y ?
$\Sigma_{Y}=\left[\begin{array}{cc}(1+\rho) & 0 \\ 0 & (1-\rho)\end{array}\right] \sigma^{2}$, i.e. Y_{1} and Y_{2} are uncorrelated!
Moreover, the variances of Y_{1} and Y_{2} are such that Y_{1} has higher variance than Y_{2}. This is EE 274 Data Compression-Lecturction property of the transform. (recall: water-filling!)
the energy compaction

Karhunen-Loeve Transform (KLT)

- We looked into what is called the Karhunen-Loeve Transform (KLT) in signal processing.
- The KLT is the eigenvalue-based linear transform.
- The KLT is the optimal transform for a given covariance matrix Σ (without proof).
- By optimal, we mean it in the sense that it maximally reduces the correlation between the transformed components.
- The components have the property that they are uncorrelated and ordered in decreasing order of variance.
- Useful for many applications: often used for data compression, dimensionality reduction, and feature extraction in various fields, including image and signal processing.

Transform Coding + KLT

- We looked into one specific transform, the KLT, which is an orthonormal matrix and allows us to decorrelate the data.

Quiz-7: How does this allow better lossy-compression of X ?

Transform Coding + KLT

- We looked into one specific transform, the KLT, which is an orthonormal matrix and allows us to decorrelate the data.

Quiz-7: How does this allow better lossy-compression of X ?
For MSE distortion, we can allocate bits to the transformed components Y in a moreefficient manner, i.e., allocate more bits to the components with higher energy. (recall: thumb-rule!)

Transform Coding Notebook

https://colab.research.google.com/drive/1ZcnjlcoOHEbiTQWvcpiPYA9HbtfB829x? usp=sharing

Transform Coding Performance on our Example

Example: consider a source $X_{n}=\rho X_{n-1}+\sqrt{1-\rho^{2}} \mathcal{N}\left(0, \sigma^{2}\right)$

```
=====================================================
Processing rho: 0.9
=====================================================
Vector Quantization Experiment
=====================================================
[VQ][Bit per symbol: 1][Block Size: 2]Rate: 1.0, Distortion: 0.163
[VQ][Bit per symbol: 1][Block Size: 4]Rate: 1.0, Distortion: 0.095
=====================================================
TC Vector Quantization Experiment
[TC_VQ][Bit per symbol: 1][Block Size: 2][Bitrate Split: [1, 1]]Rate: 1.0, Distortion: 0.276
[TC_VQ][Bit per symbol: 1][Block Size: 2][Bitrate Split: [0, 2]]Rate: 1.0, Distortion: 0.970
[TC_VQ][Bit per symbol: 1][Block Size: 2][Bitrate Split: [2, 0]]Rate: 1.0, Distortion: 0.122
======ニ=========================================
```


Transform Coding Performance on our Example

Example：consider a source $X_{n}=\rho X_{n-1}+\sqrt{1-\rho^{2}} \mathcal{N}\left(0, \sigma^{2}\right)$

```
====================================================
Processing rho: 0.99
=====================================================
Vector Quantization Experiment
=====================================================
[VQ][Bit per symbol: 1][Block Size: 2]Rate: 1.0, Distortion: 0.107
[VQ][Bit per symbol: 1][Block Size: 4]Rate: 1.0, Distortion: 0.020
=====================================================
TC Vector Quantization Experiment
[TC_VQ][Bit per symbol: 1][Block Size: 2][Bitrate Split: [1, 1]]Rate: 1.0, Distortion: 0.204
[TC_VQ][Bit per symbol: 1][Block Size: 2][Bitrate Split: [0, 2]]Rate: 1.0, Distortion: 0.890
[TC_VQ][Bit per symbol: 1][Block Size: 2][Bitrate Split: [2, 0]]Rate: 1.0, Distortion: 0.030
ニニニニニニニニニニニニニニニニニニニニニニニニニニニニニニ=ニ================
```


Transform Coding Performance on our Example

Example: consider a source $X_{n}=\rho X_{n-1}+\sqrt{1-\rho^{2}} \mathcal{N}\left(0, \sigma^{2}\right)$

```
====================================================
Processing rho: 0.5
====================================================
Vector Quantization Experiment
=====================================================
[VQ][Bit per symbol: 1][Block Size: 2]Rate: 1.0, Distortion: 0.305
[VQ][Bit per symbol: 1][Block Size: 4]Rate: 1.0, Distortion: 0.271
=====================================================
TC Vector Quantization Experiment
[TC_VQ][Bit per symbol: 1][Block Size: 2][Bitrate Split: [1, 1]]Rate: 1.0, Distortion: 0.374
[TC_VQ][Bit per symbol: 1][Block Size: 2][Bitrate Split: [0, 2]]Rate: 1.0, Distortion: 0.786
[TC_VQ][Bit per symbol: 1][Block Size: 2][Bitrate Split: [2, 0]]Rate: 1.0, Distortion: 0.343
=================================================
```


Transform Coding + KLT: Issues

Quiz-8: Can you think of any issues with doing KLT in practice?

Transform Coding + KLT: Issues

Quiz-8: Can you think of any issues with doing KLT in practice?
Ans:

- KLT is dependent on statistics of input data X !
- KLT is optimal for a given covariance matrix Σ.
- In practice, we do not know Σ and need to estimate it from data.
- Moreover, data in real-life is not stationary, i.e., statistics change over time. Need to re-estimate Σ.
- Therefore, in practice, KLT is computationally expensive!

Next class we will see other fixed orthonormal transforms which are more practical such as DCT, DFT, wavelets, etc.

