
Lecture 13

Water-filling Intuition + Transform Coding
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Announcements
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Quiz Q1

You have been given following joint probability distribution table for $$(X,Y)$$ on binary
alphabets:

P(X=x,Y=y) y = 0 y = 1

x = 0 0.5 0

x = 1 0.25 0.25

1.1 Calculate the joint entropy .

.

1.2 Calculate the mutual information .

H(X,Y )
H(X,Y ) =  P (X =∑x,y x,Y = y) log   =2 P (X=x,Y =y)

1 1.5
I(X;Y )

I(X;Y ) = H(X) + H(Y ) − H(X,Y ) = H  (0.5) +b H  (0.75) −b 1.5 = 0.31
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Quiz Q2

Consider a uniformly distributed source on alphabet

.

You have been asked to lossily compress this source under MSE (mean square error)

distortion and have been asked to calculate the rate distortion function  for a given

distortion value .

2.1 What is ?

2.2 What is ?

!, since we can always send  and achieve distortion .

{0, 1, 2}

R(D)
D

R(D = 0)
R(D = 0) = H(X) = log  32

R(D = 1)
R(D = 1) = 0 1 D(X  ,  ) <=i X  i

^ 1
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Quiz Q3

For a  source with Hamming distortion, we saw in class that 

, where  is entropy of a binary random variable with probability . Which of

the following are correct?
(Choose all that apply)

[ ] There exists a scheme working on large block sizes achieving distortion D and rate <
.

[ ] There exists a scheme working on large block sizes achieving distortion D and rate >

.

[ ] There exists a scheme working on large block sizes achieving distortion D and rate
arbitrarily close to .

[ ] There exists a scheme working on single symbols at a time (block size = 1) achieving

distortion D and rate arbitrarily close to .

Ber(1/2) R(D) = 1 −
H  (D)b H  (p)b p

1 − H  (D)b

1 − H  (D)b

1 − H  (D)b

1 − H  (D)b
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Recap

�. Learnt about Mutual Information

Let  be two random variables with joint distribution . Then we define the

mutual information between  as:

I(X;Y ) = H(X) + H(Y ) − H(X,Y )

X,Y p(x, y)
X,Y
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Recap

�. Learnt about (Shannon's) Rate-Distortion theory.

Let  be data generated i.i.d. Then, the optimal rate  for a given

maximum distortion  is:

R(D) =  I(X;Y )
Ed(X,Y )≤D

min

where the expectation in the minimum is over distributions ,

where  are any arbitrary conditional distributions.

X  ,X  , …1 2 R(D)
D

q(x, y) = p(x)q(y∣x)
q(y∣x)
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Recap

�. Saw example for Gaussian Sources under MSE distortion.

Let , i.e. the data samples  are distributed as unit

gaussians. Also, lets consider the distortion to be the mean square distortion:

 i.e the mse distortion. Then:

R(D) =   {  log   2
1

2 D
σ2

0
0 ≤ D ≤ σ2

D > σ2

Also denoted by 

X ∼ N (0,σ )2 X  ,X  , …1 2

d(x, y) = (x − y)2

R  (σ ,D) =G
2

 log    ( 2
1

2 D
σ2 )

+
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Recap: Performance
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Thumb-rule for Lossy Compression

Thumb-rule: For a given distortion measure, allocate more bits to the components

with higher variance.
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Today

�. Water-filling intuition for correlated gaussian sources

�. Learn about Transform Coding
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Lossy Compression Problem Formulation

The two metrics for lossy compression are:

Rate R  bits/source component

Distortion D 

=  

k
logN

= d(X , ) =k X̂k
  d(X  ,  )k

1 ∑i=1
k

i X̂i
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Generalization of Shannon's RD Theorem

Let  be data generated . Then, the optimal rate  for a given

maximum distortion  is:

R(D) =  I(X;Y )
Ed(X,Y )≤D

min

This is also referred to as memoryless sources.
But what if the data is ?

X  ,X  , …1 2  I.I.D. R(D)
D

 correlated
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Generalization of Shannon's RD Theorem

Consider source  and reconstruction . Then,

R(X ,D) =n min   I(X ; )
E[d(X , )]≤Dn X̂n

n

1 n X̂n

i.e. Shannon's RD theorem generalizes to correlated sources as well.

Just like  was the analog of entropy of ,  is the analog of

entropy of the n-tuple.

Xn X̂n

R(X,D) X R(X ,D)n
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Generalization of Shannon's RD Theorem

Consider source  and reconstruction . Let  define a

stationary stochastic process. Then,

R(X,D) = R(X ,D)
n→∞
lim n

 is the analog of entropy rate of the n-tuple.

can show this limit exists for stationary sources.

the best you can do for stationary processes, in the limit of encoding arbitrarily many

symbols in a block, is 

Xn X̂n X = X  ,X  ,X  , ...1 2 3

R(X,D)

R(X,D)
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Example: Gaussian Source, 

Let ,  be independent random variables.

Then,  is a 2-dimensional random vector.

Notation: .

It can be shown that:

i.e. we can greedily optimize independently over each component of the vector, ensuring

that the total distortion is less than .

k = 2
X  ∼1 N(0,σ  )1

2 X  ∼2 N(0,σ  )2
2

X =2
 [X  1

X  2
]

R(X ,D) =2 R   ,DG ([σ  1
2

σ  2
2] )

R   ,D =G ([σ  1
2

σ  2
2] ) min   [R  (σ  ,D  ) +

 (D  +D  )≤D2
1

1 2 2
1

G 1
2

1 R  (σ  ,D  )]G 1
2

2

D
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Example: Gaussian Source, 

  

R   ,DG ([σ  1
2

σ  2
2] ) = min   [R  (σ  ,D  ) + R  (σ  ,D  )]

 (D  +D  )≤D2
1

1 2 2
1

G 1
2

1 G 1
2

2

= min      log   +  log   

 (D  +D  )≤D2
1

1 2 2
1 [(

2
1

D  1

σ1
2 )

+
(

2
1

D  2

σ  2
2 )

+
]

Can be solved using convex optimization techniques (solving KKT conditions). We will look
into the answer for some intuition.

k = 2
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Example: Gaussian Source; Intuition

WLOG: assume 

R   ,D =G ([σ  1
2

σ  2
2] ) min      log   +  log   

 (D  +D  )≤D2
1

1 2 2
1 [(

2
1

D  1

σ1
2 )

+
(

2
1

D  2

σ  2
2 )

+
]

Quiz-1: Should I ever allow ?

σ  ≤1
2 σ  2

2

D  >1 σ  1
2
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Example: Gaussian Source; Intuition

WLOG: assume 

R   ,D =G ([σ  1
2

σ  2
2] ) min      log   +  log   

 (D  +D  )≤D2
1

1 2 2
1 [(

2
1

D  1

σ1
2 )

+
(

2
1

D  2

σ  2
2 )

+
]

Quiz-1: Should I ever allow ?

Quiz-2: What is  if ?

σ  ≤1
2 σ  2

2

D  >1 σ  1
2

R(D  )1 D  >1 σ  1
2
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Example: Gaussian Source; Intuition

WLOG: assume 

R   ,D =G ([σ  1
2

σ  2
2] ) min      log   +  log   

 (D  +D  )≤D2
1

1 2 2
1 [(

2
1

D  1

σ1
2 )

+
(

2
1

D  2

σ  2
2 )

+
]

Quiz-3: What is  if 

σ  ≤1
2 σ  2

2

R(D) D >  2
σ  +σ  1

2
2
2
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Example: Gaussian Source; Solution

Let R(D) curve be parameterized by , i.e. . Then, solution to the optimization

problem

R   ,D =G ([σ  1
2

σ  2
2] ) min      log   +  log   

 (D  +D  )≤D2
1

1 2 2
1 [(

2
1

D  1

σ1
2 )

+
(

2
1

D  2

σ  2
2 )

+
]

is given by:

 for ; and .

i.e. we can find  which satisfies the first condition, giving us the R(D) curve as

.

θ R(θ),D(θ)

D  =i min{θ,σ }i
2 i = 1, 2  (D  +2

1
1 D  ) =2 D

R =   log  +  log   2
1 [( 2

1
D1

σ  1
2 )

+
( 2

1
D  2

σ  2
2 )

+
]

θ

R(θ),D(θ)
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Example: Gaussian Source; Water-filling Intuition

3 cases (WLOG: assume ):

�.  and 

�. 

�. 

σ  ≤1
2 σ  2

2

D < σ  1
2 D < σ  2

2

σ  <1
2 D < σ  2

2

D >  2
σ  +σ  1

2
2
2
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Example: Gaussian Source; Water-filling Intuition

One of the main ideas in lossy-compression, recall thumb-rule!

Thumb-rule: For a given distortion measure, allocate more bits to the components
with higher variance.

For a block of 2 components, we can allocate more bits to the component with higher
variance.

This is the water-filling intuition.
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Onto Transform Coding: A Few Comments

We looked into an example of uncorrelated gaussian sources, and saw that we can
use water-filling intuition to selectively allocate bits to different components.

This generalizes beautifully to correlated gaussian processes as well (see notes).

But in general, we will have correlated non-gaussian sources, and we will need to do
something more sophisticated.

Transform Coding: Transform the source to a different domain to allow for
decorrelated components with different variances. Then, use water-filling intuition to

selectively allocate bits to different components of the transformed source.
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Transform Coding

(recall) Lossy compression problem formulation:

The two metrics for lossy compression are:

Rate R  bits/source component

Distortion D 

=  

k
logN

= d(X , ) =k X̂k
  d(X  ,  )
k
1 ∑i=1

k
i X̂i
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Transform Coding

Notation:  as . Therefore,  (vector).

Convert  to , for this class assume  is linear (matrix)

Need that  should be invertible

We can use scalar or vector quantization on  to get 

X =k (X  , … ,X  )1 k  X  ∈X Rk

 X  =Y T (X) T

T

 Y   Ŷ

EE 274: Data Compression - Lecture 13 26



Transform Coding

Why transform coding?

Decorrelation:  can be correlated, aim to de-correlate it

allows for efficient coding of  e.g. using scalar quantization instead of vector
quantization

Energy compaction: more energy in first few components of  than in the last few

allows for allocating bits to different components of  in a more-efficient manner
(recall: water-filling!)

This gives us criterion as to how we would like to choose .

We will look into a specific transform  which is an orthonormal matrix.

X

 Y

 Y

 Y

T

T
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Linear Algebra Review: Orthogonal Matrices

Consider  (matrix-vector product). If  is orthonormal (denoted by ), then:

 (orthonormality)

Square of the Euclidean norm, also called energy in the signal, is preserved under
transform:

This is also called the Parseval's theorem in context of Fourier transform.

This says that the energy in transform domain matches the energy in the original.

The transform preserves Euclidian distances between points, i.e.,
if  and , then .

Allows us to do analysis for MSE distortion!

Y = AX A U

U U =T I

∣∣Y ∣∣ =2 Y Y =T X U UX =T T X X =T ∣∣X∣∣2

Y  =1 UX  1 Y  =2 UX  2 ∣∣Y  −1 Y  ∣∣ =2
2 ∣∣X  −1 X  ∣∣2

2

D  =MSE E∣∣X − ∣∣ =X̂ 2 E∣∣Y − ∣∣Ŷ 2
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Linear Algebra Review: Eigenvalue
Decomposition/Decorrelation

Any symmetric matrix  can be decomposed as , where  is

orthonormal and  is diagonal.

 is the matrix of (normalized) eigenvectors of  and  is the matrix of eigenvalues

of .

 is orthonormal, i.e., .

We can use this to get de-correlated components of  by using , i.e.

.

Let covariance matrix of  be .

We can apply eigenvalue decomposition to get .

Then,  is de-correlated, i.e., 

.

A A = UΛUT U

Λ
U A Λ
A

U U U =T I

X Y = U XT

T = UT

X Σ = E[XX ]T

Σ = UΛUT

Y = U XT E[Y Y ] =T E[U XX U ] =T T

U E[XX ]U =T T U ΣU =T ΛEE 274: Data Compression - Lecture 13 29



Decorrelation Example

Example: consider a source , .

We will work with blocks of 2, i.e. .

X  =n ρX  +n−1  N (0,σ )1 − ρ2 2 X  ∼0 N (0,σ )2

k = 2
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Decorrelation Example

Example: consider a source , . We

will work with blocks of 2, i.e. .

Quiz-4: What is the  covariance matrix  of ?

HINT: your sequence is stationary!

X  =n ρX  +n−1  N (0,σ )1 − ρ2 2 X  ∼0 N (0,σ )2

k = 2

2 × 2 Σ X

Σ = E    [[ X  − EX  i i

X  − EX  i+1 i+1
] [X  − EX  i i X  − EX  i+1 i+1]]
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Decorrelation Example

Example: consider a source , . We

will work with blocks of 2, i.e. .

Quiz-4: What is the  covariance matrix  of ?

X  =n ρX  +n−1  N (0,σ )1 − ρ2 2 X  ∼0 N (0,σ )2

k = 2

2 × 2 Σ X

Σ =   σ[1
ρ

ρ

1
] 2
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Decorrelation Example

Example: consider a source , . We

will work with blocks of 2, i.e. .

Can show that the eigenvalues of  are

-  and 

- corresponding eigenvectors are  and .

Quiz-5: What is the eigenvalue-based transform at block-size  and transformed

components ?

X  =n ρX  +n−1  N (0,σ )1 − ρ2 2 X  ∼0 N (0,σ )2

k = 2

Σ
λ  =1 (1 + ρ)σ2 λ  =2 (1 − ρ)σ2

u  =1   

 2
1 [1

1
] u  =2   

 2
1 [ 1

−1
]

k = 2
Y
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Decorrelation Example

Example: consider a source , . We

will work with blocks of 2, i.e. .

Quiz-5: What is the eigenvalue-based transform at block-size , transformed

components ?

 and therefore 

X  =n ρX  +n−1  N (0,σ )1 − ρ2 2 X  ∼0 N (0,σ )2

k = 2

k = 2
Y

T = U =T
   

 2
1 [1

1
1

−1] Y = TX =   

 2
1 [X  + X  i i+1

X  − X  i i+1
]
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Decorrelation Example

Example: consider a source , . We

will work with blocks of 2, i.e. .

Quiz-6: What is the  covariance matrix  of ?

X  =n ρX  +n−1  N (0,σ )1 − ρ2 2 X  ∼0 N (0,σ )2

k = 2

Y = TX =   

 2
1 [X  + X  i i+1

X  − X  i i+1
]

2 × 2 Σ Y
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Decorrelation Example

Example: consider a source , . We

will work with blocks of 2, i.e. .

Quiz-6: What is the  covariance matrix  of ?

, i.e.  and  are uncorrelated!

Moreover, the variances of  and  are such that  has higher variance than . This is

the energy compaction property of the transform. (recall: water-filling!)

X  =n ρX  +n−1  N (0,σ )1 − ρ2 2 X  ∼0 N (0,σ )2

k = 2

2 × 2 Σ  Y Y

Σ  =Y   σ[(1 + ρ)
0

0
(1 − ρ)] 2 Y  1 Y  2

Y  1 Y  2 Y  1 Y  2
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Karhunen-Loeve Transform (KLT)

We looked into what is called the Karhunen-Loeve Transform (KLT) in signal

processing.

The KLT is the eigenvalue-based linear transform.

The KLT is the optimal transform for a given covariance matrix  (without proof).

By optimal, we mean it in the sense that it maximally reduces the correlation
between the transformed components.

The components have the property that they are uncorrelated and ordered in
decreasing order of variance.

Useful for many applications: often used for data compression, dimensionality

reduction, and feature extraction in various fields, including image and signal
processing.

Σ
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Transform Coding + KLT

We looked into one specific transform, the KLT, which is an orthonormal matrix and
allows us to decorrelate the data.

Quiz-7: How does this allow better lossy-compression of ?X
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Transform Coding + KLT

We looked into one specific transform, the KLT, which is an orthonormal matrix and

allows us to decorrelate the data.

Quiz-7: How does this allow better lossy-compression of ?

For MSE distortion, we can allocate bits to the transformed components  in a more-

efficient manner, i.e., allocate more bits to the components with higher energy. (recall:

thumb-rule!)

X

Y
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Transform Coding Notebook

https://colab.research.google.com/drive/1Zcnjlco0HEbiTQWvcpiPYA9HbtfB829x?

usp=sharing
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Transform Coding Performance on our Example

Example: consider a source 

==================================================
Processing rho: 0.9
==================================================
Vector Quantization Experiment
==================================================
[VQ][Bit per symbol: 1][Block Size: 2]Rate: 1.0, Distortion: 0.163
[VQ][Bit per symbol: 1][Block Size: 4]Rate: 1.0, Distortion: 0.095
==================================================
TC Vector Quantization Experiment
==================================================
[TC_VQ][Bit per symbol: 1][Block Size: 2][Bitrate Split: [1, 1]]Rate: 1.0, Distortion: 0.276
[TC_VQ][Bit per symbol: 1][Block Size: 2][Bitrate Split: [0, 2]]Rate: 1.0, Distortion: 0.970
[TC_VQ][Bit per symbol: 1][Block Size: 2][Bitrate Split: [2, 0]]Rate: 1.0, Distortion: 0.122
================================================

X  =n ρX  +n−1  N (0,σ )1 − ρ2 2
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Transform Coding Performance on our Example

Example: consider a source 

==================================================
Processing rho: 0.99
==================================================
Vector Quantization Experiment
==================================================
[VQ][Bit per symbol: 1][Block Size: 2]Rate: 1.0, Distortion: 0.107
[VQ][Bit per symbol: 1][Block Size: 4]Rate: 1.0, Distortion: 0.020
==================================================
TC Vector Quantization Experiment
==================================================
[TC_VQ][Bit per symbol: 1][Block Size: 2][Bitrate Split: [1, 1]]Rate: 1.0, Distortion: 0.204
[TC_VQ][Bit per symbol: 1][Block Size: 2][Bitrate Split: [0, 2]]Rate: 1.0, Distortion: 0.890
[TC_VQ][Bit per symbol: 1][Block Size: 2][Bitrate Split: [2, 0]]Rate: 1.0, Distortion: 0.030
================================================

X  =n ρX  +n−1  N (0,σ )1 − ρ2 2
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Transform Coding Performance on our Example

Example: consider a source 

==================================================
Processing rho: 0.5
==================================================
Vector Quantization Experiment
==================================================
[VQ][Bit per symbol: 1][Block Size: 2]Rate: 1.0, Distortion: 0.305
[VQ][Bit per symbol: 1][Block Size: 4]Rate: 1.0, Distortion: 0.271
==================================================
TC Vector Quantization Experiment
==================================================
[TC_VQ][Bit per symbol: 1][Block Size: 2][Bitrate Split: [1, 1]]Rate: 1.0, Distortion: 0.374
[TC_VQ][Bit per symbol: 1][Block Size: 2][Bitrate Split: [0, 2]]Rate: 1.0, Distortion: 0.786
[TC_VQ][Bit per symbol: 1][Block Size: 2][Bitrate Split: [2, 0]]Rate: 1.0, Distortion: 0.343
================================================

X  =n ρX  +n−1  N (0,σ )1 − ρ2 2
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Transform Coding + KLT: Issues

Quiz-8: Can you think of any issues with doing KLT in practice?
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Transform Coding + KLT: Issues

Quiz-8: Can you think of any issues with doing KLT in practice?
Ans:

KLT is dependent on statistics of input data !

KLT is optimal for a given covariance matrix .

In practice, we do not know  and need to estimate it from data.

Moreover, data in real-life is not stationary, i.e., statistics change over time. Need

to re-estimate .

Therefore, in practice, KLT is computationally expensive!

Next class we will see other fixed orthonormal transforms which are more practical such as

DCT, DFT, wavelets, etc.

X

Σ
Σ

Σ
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